

SETO CSP Program Summit 2019

Desalination by Membrane Distillation (MD) using Ceramic Membranes

Jeffrey McCutcheon, Executive Director, Fraunhofer Center for Energy Innovation

An International Collaboration

Fraunhofer USA Center for Energy Innovation (Lead)

Jeffrey McCutcheon PI

Marcus Weyd Co-PI Fraunhofer
Institute for
Ceramic
Technologies and
Systems (IKTS)

Fraunhofer
Institute for Solar
Energy Systems
(ISE)

Joachim Koschikowski Co-Pl

Novel Membrane Technology

Membrane Distillation

Direct Contact MD (DCMD)

A cold downstream solution condenses vapors crossing the membrane

Air Gap MD (AGMD)

A cold condensing surface is placed some distance from the membrane on the downstream side of the membrane

Vacuum MD (VMD)

A vacuum draws vapor across the membrane where it is condensed downstream

Necessary Membrane Properties

- High porosity (to allow vapor flow)
- Hydrophobicity (to prevent wetting)
- Resiliency under thermal and chemical conditions (to prevent failure and allow cleaning)

Why Ceramic Membranes

- Ceramic membranes
 offer unprecedented
 chemical and thermal
 resiliency
- Still retain control of pore size and architecture
- May enable use of hot wastewaters directly

Objective

- We will develop the first ceramic-based MD membrane for use in challenging thermal and chemical environments.
- We will establish relationships between MD performance and ceramic membrane properties (pore size, material)
- We will design and build these membranes in manufacturable form factors and develop models to predict their performance to aid in element and module design

Early Results: Characterization of Membranes

- Liquid Entry Pressure (LEP)
 testing quantifies the
 membrane's resistance to
 wetting
- Results show that membranes of varying pore size and PFAS coating levels resist wetting pressure of at least 2 bar
- Holds true for several relevant feed compositions

Pore Size [nm]	LEP [bar]	PFAS Coating [%]
100	5.1	1
250	3.95	1
400	2.1	1
250	2.3	0.5
250	4.1	2

Feed Composition	LEP [bar]
Demineralized Water at 20 °C	4
3 Mol NaCl/kg H ₂ O at 20 °C	4.4
Demineralized Water at 60 °C	4.1
2 g PEG1000/kg H ₂ O at 20 °C	2.4

Testing of MD Performance

Test Rig for Lab-scale Elements

Membrane distillation module

Early Results: DCDM Performance

Condensing fluid temperature 20C Crossflow velocity 30cm/s Single channel 7mm ID tube (10mm OD)

Early Results: DCDM Performance

[min]	Flux [kg/m²h]	electr. Conductivity Coolant [μS/cm]
0	-	
30	5.451	12.5
60	5.105	12.5
90	5.355	12.6
120	5.489	12.1
150	5.585	12.3
180	5.393	12
210	5.374	12
240	5.317	11.9
270	5.355	11.6
300	5.317	10.9
330	5.298	11.1
360	5.489	11
390	5.662	10.8

- Conductivity of downstream solution measured
- No increase in conductivity indicates near perfect selectivity for up to 6 hours of continuous operation
- Decrease in conductivity over time caused by dilution of the receiving solution

Summary

- We have successfully synthesized a ceramic-based MD membrane that resists wetting
- This membrane has shown reasonable performance in DCMD mode with reasonable flux and exceptional selectivity
- We will continue to explore the impacts of membrane material and pore size on MD performance as we begin to design multi-channeled membranes for larger scale element and module design